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Abstract We develop a linearid lheory for lhe classical Heisenberg model, which allows us 
to approximately solve for the local distortion of spins around an impurity m a non-collinear 
antifemmagnet Provided hat the ratio of disNrbed to undisturbed bonds is small, Ihe theory 
should be applicable. The lheory is particularly useful when alloying lifts the degeneracy oRen 
found in non-collinear magnets. We look at the cases of y-Mn alloys in general. and Mn,R in 
particular. We can successfully predict the experimentally observed phase Umsitions caused by 
alloying in these materials, providing funher evidence for Ihe exotic 'hedgehog' phase. 

1. Introduction 

Geomehically frustrated lattices provide some of the most sophisticated and interesting 
types of antiferromagnet. The fundamental cause is that the frustration forces some of the 
bonds to gain less than their optimum energy. There is usually a variety of ways in which 
this loss can be spread amongst the different bonds, often leading to degenerate ground 
states at leading order. This degeneracy is usually lifted on a smaller energy scale than 
that promoting the magnetism, and this in turn leads to the possibility of phase transitions 
between different magnetic ground states caused by fairly small changes in the magnetic 
interactions. In particular, alloying a frustrated antiferromagnet can lead to such a phase 
transition at quite modest doping. 

In this paper we will primarily be concerned with lattices related to the face-centred- 
cubic lattice. y-manganese is the face-centred-cubic variety of Mn and Mn3F't orders into a 
Cu3Au structure, which finds the atoms on a face-centred-cubic lattice with one of the four 
natural sublattices substitutionally replacing Mn with platinum. Both of these systems show 
a variety of antiferromagnetic phases; y-Mn shows four experimentally [I], and Mn3Pt 
has two (21. Many different theoretical explanations have been presented for the cause 
of these phase transitions [3], and we have recently proposed the alloy disorder as being 
responsible [4]. The current paper develops our description for the effect of alloying on 
the antiferromagnetism, and yields a prediction for which type of antiferromagnetic order 
is promoted by the different possible alloy disorderings. 

In these frustrated antifemmagnets the different phases observed can be explained in 
terms of the several ways in which the loss in bonding energy can be distributed. Since the 
bonding energy is usually related to the relative angle between the spins, a redistribution 
of bonding energy corresponds to a change in the local distribution of neighbouring spin 
orientations. There are several possibilities: firstly, a certain fraction of the bonds can 
be selected and made completely antiparallel. This leads to a collinear phase, which is 
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theoretically preferred by both quantum mechanics IS] and magnetoelasticity theory [6]. 
Secondly, the loss in bonding energy can be shared equally between all bonds, and then 
we find a non-collinear phase with the spins all oriented at a fixed angle with respect to 
their neighbours. Thirdly, there can be a compromise solution with some bonds sharing 
the loss and others remaining unfrustrated. Whether or not these different possibilities 
exist is case dependent, and each particular geometry should be considered independently. 
The more exotic phases with non-collinear spins may be stabilized by both non-linear spin 
interactions [7] and Fermi surface effects in itinerant systems [SI, although to our knowledge 
there is no convincing experimental system that typifies these explanations. As we shall 
see, paramagnetic impurities doped into the magnet prefer non-collinear states. 

55DW TSDW 

- 
DSDW 

Figure 1. The spin SUUCLUT~S of the h e  highly symmetric sound slates of the Heisenberg 
model on the face-cenbedcubic lattice. % type of anlifenomagnetism. which is built up 
from orthogonal componentr that have parallel planes of atoms alternating in orienlation as one 
wvels in a direction perpendicular to the planes. is type I. The collinear phase is called SSDW. 
the coplanar phase DSDW and the three-dimensional cubic phase is called mow. 

y-Mn has type-I antiferromagnetism, which means that the magnetic Bragg spots appear 
half way between nuclear Bragg spots along each of the three Cartesian directions. This 
type of magnetism can best be described in terms of the collinear state for which we find 
altemating planes of up and down spins as we travel pamllel to one of the three Cartesian 
directions (see figure 1). This state finds precisely one third of the nearest neighbours 
parallel and hence frustrated. However, there is a large degeneracy to leading order, which 
can be described in terms of a superposition of the three possible collinear states. Equal 
amounts of all three possibilities shares the frustration equally between all bonds, and there 
are also phases for which there is a compromise, for example when we superimpose two 
collinear states. On a practical level, the magnetic Bragg intensity does not vary much in 
magnitude, although at a phase transition the Bragg intensity would be shifted from one 
Bragg spot to another that is symmetrically related, as a second or third collinear component 
is introduced. In a multi-domain sample one sees very little effect from such a phase 
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transition, since different domains compensate each other with equal intensity transferred 
out as transferred in. For the current investigation, it  is important to realise that as more 
paramagnetic impurities are doped into the Mn, the ground state becomes progressively 
more non-collinear. For almost pure Mn we have a collinear phase, which transforms 
eventually to the equal-bond phase via a sequence of compromise phases [I]. 

Mn3Pt shows quite different behaviour, involving a transfer of magnetic scattering 
between symmetrically unrelated Bragg spots. In face-centred-cubic nomenclature, the 
Bragg spots shift from being type I to type 111, although the particular phases involved 
are quite unrelated to their face-centred-cubic counterparts. This phase transition occurs 
for the stoichiometric alloy as a function of temperature, but a brief look at the phase 
diagram [2], shows that the transition is strongly affected by alloying. The initial problem 
of magnetic structure determination has proved to be non-trivial, with the original proposal 
[ Z ]  being recently challenged by one of the present authors [91. In the new description 
the phase transition involves a reorientation of the spins between two phases that have 
identical angles between all the nearest-neighbour spins, and are only different at next- 
nearest neighbours (see figure 3). One phase has three possible orientations for the spins, 
much akin to the triangular lattice phase, while the new phase is predicted to have twelve 
different possible spin orientations, which has led to the name 'hedgehog' phase being 
proposed. In this article we will predict this change of phase observed with alloying, giving 
further evidence that the proposed 'hedgehog' phase is correct. 

In section 2 we will introduce our approximation scheme for solving for magnetic 
impurities in non-collinear magnets. In section 3 we apply our theory to the two systems 
of experimental interest and in section 4 we conclude. 

2. The linearized Heisenberg model 

We are dealing with the most elementary description of magnetism, since the non-collinear 
nature of the states is significantly difficult to deal with: we work with the classical limit 
of the Heisenberg model. We use the representation: 

1 1 
Ho = -x.rijsi . kj + gi - 1) 

2 i j  2 i  
(2.10) 

where the second term constitutes Lagrange multipliers which will be used to constrain the 
lengths of the spins to unity. This Hamiltonian can be minimized directly: 

.rijSj +A& = o a Ho 
a s i  
-= 

from which we can deduce a ground-state solution, 9: say, which has energy 

(2.16) 

(2.k) 

in terms of the Lagrange multipliers. In principle we would have liked to have solved this 
Hamiltonian for systems that involve periodic choices of coupling constants Jij that have 
local disturbances, such as missing bonds corresponding to paramagnetic impurities. In 
practice this type of problem is prohibitively difficult in all but the most elementary cases 
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[IO], and so in this article we will discuss a linearization scheme from which we can deduce 
the likely physics. 

We include an infinitesimal interaction to some external field and solve the resulting 
problem perturbatively. This is not the problem that we mly  want to solve, since finite 
changes would be more physically appropriate. We have introduced a parameter, 6. to 
describe this linearization procedure. The physical problem involves 6 = 1, and the 
linearized problem that we actually solve involves 6 H 0. We elect to couple our external 
field to several of the existing spins, with 
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where 6 is this infinitesimal coupling constant, K; measures the strengths with which the 
different spins feel the disturbance and 9 is the orientation of the extemal field. In the 
presence of this ‘source’ term the ground state satisfies 

with energy 

(2.2b) 

(2.2c) 

This constitutes the problem that we will attempt to solve. It is useful to realize that we 
are dealing with a fairly general Hamiltonian, which includes, as special cases, bath a 
substitutional missing spin and an additional interstitial spin. To omit a spin we can orient 
T antiparallel to the offending spin, couple it in precisely the same way as the existing spin, 
and then choose 6 = 1 to ‘cancel’ out the existing spin. In order to add a new interstitial 
spin, we can couple + to the relevant neighbouring spins and then optimize the resulting 
solution over the orientation of T ,  effectively allowing the additional spin to choose its 
orientation. 

Since we have been unable to solve our problem exactly, we have resorted to a 
perturbative expansion. We are intending to work with small distortions around a known 
solution and so we reformulate the problem in terms of the change with respect to some 
reference solution: that of the original Hamiltonian Ho. We set: 

Si = 3; + 6Si A; = hp + SA; (2.3) 

where the additional contributions will eventually become linear in the parameter 6. The 
notation we use will involve A to indicate other than linear dependence in 6. In terms of 
these small displacements the constraints become 2s: .6S; + 6s; .6S; = 0. Inserting this 
assumption into the goveming equations and using the constraints and known solution we 
obtain 
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with energy 

This result is exact and enables us to deduce the leading order perturbative correction 
directly: the right-hand side of (2.4a) can be neglected as can the final term in the energy 
(2.4b). Although we will not be concerned with the result here, if we wanted to proceed 
with the perturbation theory, we would also need the change in Lagrange multipliers 

SA; = - J;j@ .aSj - 8 K i @  * + f (AP +sA;)6S; .6Si (2 .k )  
j 

to complete the theory. 
One of the more interesting issues is that of how several impurities interact with each 

other. Unfortunately, in the present analysis there is no point in including several impurities, 
because to the order in which we solve the problem different impurities do not interact. The 
analysis is effectively identical when there are several impurities; the only difference being 
an additional label on the vector, T, and coupling constant, K ,  to label the impurity type. In 
this article we will be concerned only with the leading order effect of which type of ground 
state a particular type of impurity prefers, and we leave the effects of correlations between 
impurities to later. Subject to this fact, our choice of Hamiltonian then becomes effectively 
unique. 

In order to proceed further we have been forced into linearizing the problem. In practice, 
this amounts to allowing each spin the freedom to rotate through a small angle picking up an 
additional small component perpendicular to its original direction. To describe this freedom, 
we need to choose a local two-dimensional basis perpendicular to the original spin direction; 
one for each site. If we elect to use 

( 2 . 5 ~ )  

(2.56) 

for atoms which are not originally parallel to f, and choose X and 3 arbitrarily if 9: is 
parallel to f, then in terms of 

f . iy = cos& f#,i E (0, n) ( 2 5 )  

and 

6Si = -6 ( x i x i  + y i%)  (2.5d) 

to leading order 
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where we now recognize a linear problem for finding xi and yi. The coupling between the 
different components depends strongly on the allowed local rotational freedom, and for our 
particular chosen representation we find that 

X i  * X j  = ( I  - c o s z ~ ~ - c o s 2 ~ j  +cos4 i~os4 j@.~) / s in4 i s in4~  (2.7a) 

Xj B = [cos$j?. (e x q)] /sin&i sinb, (2.76) 

B * $ = (.$ Sy -cos#i cosq+) /sin#> sin q+. (2 .7~)  

The first observation we make is that for coplanar distortions (namely !f in the plane of a 
coplanar spin state), we have no need of the yi because the fluctuations perpendicular to 
the plane do not couple to the fluctuations in the plane. Secondly, if the impurity spin 
is orthogonal to a coplanar spin state, then all the cos& vanish and so again we have no 
need of the yi. We should point out that on a practical level this real-space formulation is 
not greatly useful, and we have only used it on finite clusters as an independent check for 
our analysis. 

The problems that we have tackled have involved a periodic undistorted ground state, 
and the extraction of this underlying periodicity makes the problem ultimately tractable. 
There are still many antiferromagnetic sublattices in our chosen materials, four for y-Mn 
and either four or twenty-four for Mn3F't. The technical problem then reduces to that of 
matrices over sublattice degrees of freedom. a say, combined with the reciprocal space 
degrees of freedom originating from the antiferromagnetic periodicity, which are diagonal. 
In terms of the Bloch transforms 
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( x 3  Y I ~  = C e x p  [ik. ( ~ 4  + &)I ( x ,  y)ie 

K k  = 

~kkad = s.,A~ + - C e x p  [ik (a+ c, - Bi, + *)I J~~~,,, 

(2 .8~)  

(2.8b) 

(2.8~) 

I 

exp Iik . (I + c,)] K I ~  sin 
I 

1 

N 11' 

where c, are the positions of the atoms in the unit cell, we eventually derive 

c Xw. X W * < k u * x k ,  + cXa . ?&kar,yka' = K k  (2.9a) 

Y, X&&XkLo' + % . k&.Pkm.yk, = 0 (2%) 
C' a' ~- 
a' .' 

82 1 A E  = S E  + S ~ E  = s EQT. @ - -- K L X ~  
i 2 N  k 

(2 .9~)  

for the induced spin distortion, x k  y k ,  and its energy, A E .  The final theoretical task is to 
try to use the theory to make experimental predictions: this involves finding the local spin 
distortion. The natural experimental probe for spin distortions surrounding an impurity is 
magnetic diffuse scattering [ I  I]. The diffuse scattering profiles from our impurities can be 
deduced from the local spin deformation 6Sk, which is elementary to deduce: 

(2.10) 
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Although the actual observable scattering is restricted to the component perpendicular to 
the momentum transfer direction, and the range 'of the scattering is limited by the local- 
moment form factor, we will ignore these complications and restrict our attention to the 
square modulus of the spin density, I SSk I z .  The remainder of this article is devoted to 
gaining an insight into the predictions of this simple theory. In the rest of this section we 
will deal with some general aspects, and in the next section we will look at our particular 
experimental systems. 

The linear term in the energy is dominant if it exists. For the case of a missing spin, 
the orientation of the perturbation F is necessarily anti-parallel to one of the spins, St 
say, and the coupling is via the original bonding, namely Ki = Joi. We find that 
6 E  = -6 xi Jo;%. S! = 6A: and simply measures the loss in energy from the omitted 
spin. For the case of an additional spin, the vector @ represents the orientation of this 
additional spin and is free to rotate towards its preferred direction. The linear term then 
chooses this orientation so as to be antiparallel to the local field 

F = (2.11) 

and yields a contribution to the energy from the additional spin originating from its 
interaction with this local field. The quadratic term in the energy originates from the 
polarization of the surrounding spins by the local impurity and constitutes the effect that 
we are predominantly interested in. 

It is quite common for the systems in which we are interested that an additional spin 
is placed at a local 'dead spot', namely a point for which the local field F vanishes. The 
reason for this is that the substitutional si te  is usually one of high symmetry, and if there 
are an equal number of bonds to all of the possible sublattices (or at least a subset with a 
helpful symmetry group), then the local field will cancel in a pure antiferromagnet. For this 
situation it is the polarizabili@ of the spin state that will select the preferred spin orientation 
for the moment impurity, and the impurity moment will be held in place much more weakly 
than usual. 

We ought to explain the limitations of our linearisation procedure. In the search for 
a small parameter with which to justify the theory. the natural choice is JIA',  where bo 
is the local field holding a spin in place for the undistorted spin state. The basic idea is 
that A'f J is the excess number of anti-parallel neighbours and corresponds to the number 
of bonds that a particular spin feels. If a spin is removed, then its neighbours will feel a 
change from only one of these neighbours, hence our suggestion for the small parameter. 
In fact this result is fundamentally correct, although the explanation is bogus. Thinking in 
terms of the linear response to the distortion, the dispersion does scale with A' on average, 
but there are the low-energy Goldstone modes to contend with, which would allow the 
distortion to extend over arbitrarily large distances. The local symmetries of the distortions 
that we consider preclude coupling to three long-range modes, and so the distortions decay 
very fast and there are usually only one or two relevant neighbours controlling the spread 
of the distortion for any particular spin, thereby justifying the assertion. 

There is one possible disaster that can overcome this theory, however: spontaneous 
symmetry breaking in the distortion. We have presumed that the dominant response to the 
impurity will come from the component parallel to the impurity: this is not necessarily the 
case. It is possible for the response to be dominated by a distortion perpendicular to the 
original spin state with magnitude JS. This type of behaviour can occur when the original 
ground state is heavily degenerate, and shows up as additional solutions to the original 
linear equations (2.9). This type of solution is the manner in which the theory indicates mat 
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the ‘wrong’ ground state has been chosen for the reference state, and can be interpreted as 
the distortion changing the ground state. This type of behaviour is relevant to Kagome or 
perchlorate lattice systems, which have local degeneracy, but will not be directly relevant 
to us, provided that we select the correct ground-state to calculate with. We could preclude 
such problems with the inclusion of small terms to stabilize the chosen ground state, by 
arguing that although the local energy gain outweighs the degeneracy-breaking energy scale, 
the only changes in the ground-state for our systems involve long-range distortion which 
would not be energetically favourable. For the Kagome case, however, even this would 
be physically unreasonable, since there are local changes of ground state which involve 
a negligible change in the weak degeneracy breaking interactions, but locally optimize 
the polarization around the impurity. For our linearization scheme this range argument is 
bogus: any small degeneracy-breaking inclusion would necessarily dominate changes in 
ground state on all length scales, since even a small inclusion is larger than an infinitesimal 
distortion. 

In fact, our limiting procedure has ‘hidden’ the physics. For finite changes of spin 
magnitudes, the possibility of spontaneous symmetry breaking reemerges, but one must 
then consider the balance between the local energy gain and the degeneracy-breaking field at 
longer distance. Our limiting procedure does not permit this comparison, because we would 
have had to include a limiting degeneracy-breaking interaction to maintain the balance. This 
particular problem has been considered before [IO], and is not directly relevant to the rather 
coarse energetic arguments that we are dealing with here. 

The fundamental physical point is that although in our simple models there is 
degeneracy, in real physical systems this degeneracy is lifted. We have omitted the physics 
that lifts the degeneracy. A single isolated impurity cannot really overcome this macroscopic 
interaction. If we consider a system with a phase transition, then two distinct phases are 
independently stable in different regimes, and we can consider impurities in both phases. 
If the actual doping itself causes the phase transition, then the energy difference between 
the two impurities in the two phases will pick this up. Problems emerge when we look 
at the details of the phase transition: if we get quite close to the phase transition, then 
locally around the impurity a small region of the incoming phase can become trapped. The 
system then benefits from the new phase locally and from the old phase at longer range. 
In practice, the phase transition becomes a ‘mess’, and occurs at a concentration which 
is quite difficult to predict, but the fundamental energetics are controlled by a comparison 
between the two impurities in the two phases. We will presume that the degeneracy- 
breaking interaction is strong enough to eliminate spontaneous orthogonal distortion and 
look to energetic predictions for first-order phase transitions only. 
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3. Predictions for Mn alloys 

In order to set the scene, we should initially study the simplest variants of our model in order 
to check the internal consistency and validity of our results. Several features are peculiar to 
non-collinear ground states: if we have a collinear ground state, then the omission of a spin 
has absolutely no polarization effect on the spin configuration predicted by our perturbation 
theory. This result originates from the fact that the local perturbation is parallel to the 
affected spins and so is attempting to alter their length, which is not permitted by the spin 
constraints. For ajinite perturbation it is possible for a perpendicular distortion to self-trap 
[121. This behaviour is not permitted by our linearization, which prohibits such a non- 
linear response. For an impurity addition, on the other hand, there is no polarization if 
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there is a local field F for the same reason, but if the impurity spin is added at a ‘dead 
spot’ then there is a polarization effect. The impurity spin orients itself perpendicular to 
the collinear spin direction and induces a short-range perpendicular distortion. At first sight 
one might have expected a long-range response to the impurity, because of the low-energy 
‘Goldstone modes’, but because we are at a ‘dead spot’ there is no coupling to the underlying 
antiferromagnetism and the distortion necessarily decays. If we arbitrarily include a local 
impurity that is not at a ‘dead spot’, but has an orientation other than the local field direction, 
then the quadratic response of the system is divergent indicating that there is another ground 
state with a stronger linear response. For non-collinear states there is almost always some 
form of polarization originating from a local impurity, because usually not all of the affected 
spins are parallel to the impurity and so some of the neighbours can reorient and make use 
of the impurity. 

Perhaps the simplest system to study is the square lattice Nee1 state. Due to collinearity, 
the only non-trivial polarization effects originate from impurities added at ‘dead spots’. A 
spin sitting cenhally above a ‘square’, which couples uniformly to its four neighbours, yields 
a polarization energy of S Z E  = -0.3633862~2/J, where K is the coupling constant. Since 
there are four bonds, for similar magnitude coupling constants the system only manages 
about of the available bonding. This form might be anticipated from the fact that the 
competltion is between one additional bond versus four original bonds (namely A: = 45) 
and second-order perturbation theory, although the magnitude is rather more difficult to 
guess. The scale of the effect is the same order as the antiferromagnetism, and so for the 
more interesting frustrated antiferromagnets the disorder can lift any underlying degeneracy 
and predict the ground state. 

Probably the simplest non-collinear system to study is the triangular lattice with its 
120° ground state. This particular system has only a discrete chiral degeneracy and local 
defects are unable to effect a transition between the degenerate ground states. The example 
is instructive, however, because it suggests what we might expect from a general non- 
collinear spin state. If a particular spin is infinitesimally reduced in length, the nearest 
neighbours are able to rotate to compensate, because the local field they feel is at 12.0” to 
their direction. Although the moments are highly coordinated, with Z = 6, the frustration in 
the lattice ensures that only half of the bonds can be achieved in the ground state and so the 
stabilizing field is smaller than that of the square lattice (namely A: = 35). The natural site 
for an impurity lies above the plane, connecting to a triangle of moments below. Once again 
we are sitting at a ’dead spot’, and so the additional moment is free to rotate. The impurity 
spin orients itself perpendicular to the coplanar spin configuration and induces a polarization 
energy of S2E = - 0 . 5 ~ ~ / 5 ,  more than that for the square lattice. Considering the fact that 
there are now fewer bonds, this is a large difference. This difference can be attributed to two 
effects: firstly, the local field holding the spins in place is smaller; and secondly, the larger 
intrinsic coordination plays a role in extending the polarization further from the impurity. 
In other words, since we only need three neighbours to balance the local field and we have 
sir to choose from, there is more opportunity for the deformation to spread This argument 
is fairly general and quite central to an interpretation of these phenomena. The distortion 
in a frustrated antiferromagnet is usually stronger and longer range than that in a non- 
frustrated magnet. When we consider the reduction of the magnitude of a spin, however, 
the characteristics are quite different. The infinitesimal reduction yields a linear loss of 
6 E  = 365 from the local field and a polarization contribution of a2E = -0.57608625. 
This polarization energy comes from a surprisingly small region with the distortion decaying 
very fast. Unlike the previous case, where the distortion was perpendicular to the plane 
of moments, the distortion is now in the plane of moments. The fact that all the spins 

’! . 
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are at 120" to each other now means that there is a loss of a factor of two in transmitting 
the coupling between spins and we would now need all six of the spins to compensate 
the local stabilizing field of three. Even worse, some of the spins are actually parallel to 
the imposed distortion and these spins find it more difficult to reorient, further reducing the 
polarization spread. Impurities composed of omitted spins polarize subject to the frustration, 
but impurity moments added at 'dead spots' can sometimes polarize effectively in a less 
frustrated way. 

3.1. y-manganese 

y-Mn alloys are a much studied example of a frustrated antiferromagnet [ l ,  131. Their 
behaviour is characteristic of the physical phenomenon which instigated our study: phase 
transitions between different antiferromagnetic ground states. The classical Heisenberg 
model exhibits a host of degenerate ground states for the facecentred-cubic lattice. of 
which the most relevant three for us are depicted in figure 1 and are called the SSDW, DSDW 
and TSDW states (standing for single, double and treble spin density waves). The most 
sensible explanation for the observed experimental phase diagram of y-Mn,Nil-, [ I ]  with 
nickel doping is that of a sequence of phase transitions between the SSDW state for undoped 
y-Mn, through an intermediate DSDW state, eventually reaching a cubic TSDW state at about 
a quaiter doping. The dominant antiferromagnetic interaction is probably representable as 
nearest-neighbour Heisenberg-like and therefore the interaction which lifts the degeneracy 
is expected to have a smaller energy scale. Although many possible mechanisms for lifting 
this degeneracy have been proposed [13]. we believe that the role of the alloy disorder is 
central to an explanation for the phase diagram. The present model makes predictions for 
the amount of energy available to each of the different states from isolated impurities and 
thereby enables a comparison between the different states to be made. 

Before we move on to a comparison with the experiments, which involve the 
consideration of substitutional impurities, firstly we will consider the role of interstitial 
impurities. This is not as absurd as might at first be considered, if one remembers that adding 
a small quantity of interstitial carbon into the alloys alters the phase diagram considerably 
[ 141. There are two natural sites to add an interstitial impurity: firstly there is a tetrahedral 
site in the centre of a tetrahedron of Mn atoms and secondly there is an octahedral site with 
six nearest neighbours. 

Tetrahedral interstitials lie at 'dead spots'. The additional spin tries to align itself 
orthogonal to as many existing spins as it can. For the case of the SSDW and DSDW there 
is a direction that is orthogonal to all the collinear or coplanar spins respectively, and 
impurities oriented in this direction yield a polarization energy of @ E  = - 0 . 5 ~ ~ / 5 .  For 
the TSDW state, however, all three spin dimensions are used in the ground state and there 
is no preferred direction for the impurity. Whatever the orientation of the impurity, the 
polarization energy is: 62E = -0.33 3 3 3 ~ ' / J  for the TSDW state. This type of impurity 
prefers a spin state employing a low number of spin dimensions. This basic result appears 
to be true for all 'dead-spot' impurities, which like to orient anti-parallel to existing spins 
and therefore prefer an unused spin direction. 

Octahedral interstitials do not lie at 'dead spots', since they only neighbour three out of 
the four natural antiferromagnetic sublattices. The local field F = -2~s: for the spin to 
which the impurity is not a neighbour. The linear contribution does not break the degeneracy 
and yields a contribution of - 2 6 ~  to each state, when the impurity is aligned parallel to the 
sublattice that it does not neighbour. The polarization contribution does lift the degeneracy, 
however, and yields 0, -0.363 3 8 ~ ' / J  and -0.401 2 6 ~ ' / J  for the SSDW, DSDW and TSDW 
States respectively. The SSDW cannot benefit because it is collinear, and the TSDW is the 
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best choice because it is the ‘most’ non-collinear state. It is possible (but unlikely) that 
octahedrally coordinated carbon impurities might explain the observed contraction of the 
Mn-Ni phase diagram under the action of a small amount of doped C. Once again, this 
result appears to be quite general and robust: when additional moments are included at 
sites that feel a local field, the states that are preferred are those with the highest degree of 
non-collinearity. 

Now we tum to the experimentally relevant case of substitutional doping. In these 
alloys it is generally believed that the Ni impurities do not develop moments and behave 
as paramagnetic defects 1131. This leads us quite naturally to consider the predictions of 
our theory when a moment is infinitesimally reduced in magnitude. The linear contribution 
does not lift the degeneracy, yielding SE = 46J for each state. The polarization does lift 
the degeneracy quite strongly, however, yielding 0, -0.72676J and -0.90905J for the 
SSDW, DSDW and TSDW respectively. The collinear SSDW can gain nothing but the other 
two form a strong polarization cloud and recoup a sizeable fraction of the lost bonding 
energy, namely about a quarter. This calculation gives a satisfactory explanation for the 
phase transitions in y-Mn alloys. In the collinear phase the paramagnetic impurities can 
recoup none of their lost bonding energy, whereas in the non-collinear phases a contribution 
proportional to the impurity concentration times the original antiferromagnetic energy is 
regained. Since the energy scale that lifts the degeneracy is likely to be a small fraction of 
the antiferromagnetic energy scale, a doping level of a quarter to cause the phase transition 
seems perfectly reasonable. Remember that the undoped alloy suffers a distortion of around 
6% [IS] and therefore the energy scale which lifts the degeneracy cannot be much smaller 
than J .  Indeed, the magnetoelastic component must be of the order of J .  

If we proceed to a more direct verification of the theory, then we arrive at some problems. 
The definitive experiment that analyses local spin configurations amund alloy disorder is 
magnetic diffuse neutron scattering. The relevant experiments have been performed, and 
large peaks associated with non-collinear deformations around the alloy impurities have 
been observed [161. The form of this scattering can be understood in terms of a minor 
reorientation of the surrounding shell of nearest neighbours. The present theory is for an 
isolated impurity, and the resulting distortion is much longer range. It is quite natural to 
ask whether there is still agreement with the diffuse scattering. It is elementary to deduce 
the reciprocal-space spin density from the local impurity and polarization cloud, and if 
we ignore the perpendicular nature of the scattering, which is sensible in the highly non- 
collinear states, then we can associate the diffuse scattering with the square of the magnitude 
of the spin density. We plot this quantity for the TSDW state in figure 2. Although there 
is obviously a large amount of scattering around the relevant Bragg spots, the form of this 
scatiering is violently anisotropic and is dominantly found away from the line connecting 
the zone centre to the ‘vanishing’ magnetic Bragg spots. Although this result is rather 
disappointing, the fact that the experiments were performed when the doping fraction was 
about a quarter implies that each Mn atom has several neighbouring impurities on average, 
and so it is not that surprising that the longer-range aspects of the diffuse scattering are 
poorly described. 

One quite general feature of the impurity spin density, appears to be the lack of scattering 
at points that correspond to the existing ground state. For our simple isolated impurity case 
the way in which this scattering is lost is via the point-group symmetry of the impurity 
deformation. Since the impurity has a lower point symmetry there are lines of zeroes 
induced in the scattering which are not expected to be found in a more highly doped alloy. 
The most we can hope to deduce from our calculations is the area of the Brillouin zone in 
which we might expect to find diffuse scattering and the plausible range of the scattering if 
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Figure Z. The magnetic diffuse scattering profile from lhe TSDW slate with one of the atom 
having an infinitesimally reduced momenL We have plotted the scattering from lhe i y  plane 
using the point (0. 0. 1) as the origin The observed scattering is peaked at the point (0, 0. I). 
but bear in mind that lhere is also scattering amund the (I, 0. 1 )  and (0, 1, 1) positions. which 
does not show up in lhis section because the symmetry of lhe scanering dws not allow it to 
show up. The (I. I .  1 )  point corresponds to a chemical Bragg spot and finds no observable 
scaUering in ifs vicinity a1 all. 

this is less than the impurity-impurity separation. For a very low concentration of impurities, 
we would hope for more. 

3.2. Mn3Pt 

The compound Mn3R is a rather less well studied but equally interesting antiferromagnetic 
material. The Cu3Au chemical structure means that the basic unit of frustration is the 
triangle rather than the tetrahedron. The natural antiferromagnetism on a triangle is the at 
120' phase, with all nearest-neighbour spins being 120" to each other, thereby achieving 
50% of the available bonding shared equally between all the bonds. 

Experimentally the system exhibits an antiferromagnetic phase transition between two 
distinct magnetic phases 121 as a function of both temperature and alloying. At the phase 
transition the Bragg spots move and the antiferromagnetic unit cell doubles in all directions, 
taking the original three magnetic atoms per unit cell up to twenty-four. Early theoretical 
descriptions were exotic 121, but recently one of the present authors has pointed out [9] 
that even if all nearest-neighbour spins are constrained to be at a relative angle of 120". 
there is still residual ground-state degeneracy, including two phases with precisely the right 
symmetry to explain the low- and high-temperature Bragg spots. We depict these two phases 
in figure 3. The low-temperature or triangular phase is coplanar, while the high-temperature 
or hedgehog phase is truly three dimensional. There is as yet no convincing experimental 
evidence for the hedgehog phase, and one line of research is to try to provide predictions 
for possible experimental verification. 

Unlike the y-Mn system, where the disorder is huge. Mn3R is a well-ordered 
stoichiometric alloy for which the experimentally induced compositional changes are small 
[Z]. This material is therefore a much more suitable candidate for our theory. The 
experimental phase diagram indicates that there is a strong dependence of the phase boundary 
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Figure 3. The spin smctures of t h ~  two proposed ground states for M n x h  We have depicted 
a unit cell of each phase. with squares denoting pt atoms and circles denoting Mn atoms. All 
spins are oriented to point from Mn atoms towards pt atoms. Since the hedgehog phase (a) is 
rather tricky lo pichm, the reader might like to consmct the spin orientations fmm the triangular 
phase unit cell (b). The hedgehog phase can be consrmcted using simultaneous Vanslations of 
the triangular phase unit mil, combined with spin-space reflections in the plane perpendicular 
to the Vanslation vecwr. 

on the alloy concentration, with additional Mn stabilizing the hiangular phase and with 
additional F’t stabilizing the hedgehog phase. The theory should predict this. 

When we consider the substitution of a Pt atom by a Mn atom, there is a minor difference 
from previous examples: the bond lengths are equal and so the additional bonds will have a 
very similar strength to the underlying bonds. We will treat all bonds as being equal, namely 
K = J .  There are twelve nearest-neighbour Mn atoms at each Pt site. For both phases we are 
adding at a ‘dead spot’, with one each of the twelve hedgehog spin orientations and an equal 
mixture of the three sublattices for the triangular phase. The polarization contribution to 
the hedgehog phase is independent of the orientation of the impurity spin at -0.708 236’J. 
For the coplanar triangular phase the polarization depends strongly on the orientation of 
the impurity spin, ranging from -0.61654s2J when the impurity is coplanar with the spin 
state to -0.954936’J when the spin is perpendicular to the spin state. The prediction is 
straightforward, additional Mn should favour the triangular phase, with an energy saving of 
about $5 per impurity. This is perfectly consistent with the experimental phase diagram. 
The physical explanation for the effect is identical to our previous examples, with the 
impurity at the ‘dead spot’ preferring the phase with a spin-space dimension that is unused. 

When we consider the diffuse scattering profile for this triangular impurity, we find 
scattering very similar to that found for the y-Mn system, as depicted in figure 4. The 
scattering is peaked around the existing Bragg spots and indicates a susceptibility towards 
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the TSDW state as doping is increased. This is as might be expected, since from the point 
of view of the local impurity, we may also consider this type of doping to be locally y-Mn 
with more distant 'disorder' from the ordered Pt sites. In this picture the impurity reinstates 
the third dimension of the TSDW instead of eliminating it as was the case for the omission 
of a spin in the TSDW. 

Figure 4. The magnetic diffuse scattering profile from the distortion surrounding a Mn atom 
substitutiondly replacing a Pt atom in the triangular phase of M n i R  nte form of the scattering 
and interpretation am identical to thal for the r s D W  casc of figure 2. 

The second type of impurity in this system is the substitution of a Mn atom by a Pt 
atom. There is very little similarity to the y-Mn system for this case. Each Mn atom 
has eight nearest-neighbour Mn atoms and four nearest-neighbour Pt atoms. Since all the 
neighbouring spin orientations are 120". the first shell of neighbours polarizes in an identical 
way when considered independently; it is only the manner in which the polarization cloud 
extends to more distant neighbours that lifts the degeneracy. Since there are eight nearest 
neighbours achieving 50% of the bonding, the linear term is 6 E  = 6A: = 465. The 
degeneracy is lifted by the polarization energy which is: -O.66679J2J for the triangular 
phase and -0.758 50a2 J for the hedgehog phase. The experimental prediction is again 
clear, additional Pt atoms should stabilize the hedgehog phase. The energy saving per bond 
is much smaller than that for the Mn substitution, being around & J per impurity. Since the 
polarization only behaves differently at second nearest-neighbours, this difference is to be 
expected. The physical explanation for the stability fits well with our existing interpretation, 
where omission of spins prefers more highly non-collinear phases because the polarization 
can spread further, there being fewer parallel spins that are difficult to polarize and more 
options in terms of neighbours to use. The theory agrees with experiment, in the sense 
that the observed phase boundary points in the right direction, although we would predict a 
change in slope for the phase boundary at the stoichiometric compound with the hedgehog 
phase dying out faster with Mn doping than the triangular phase does with F't doping. There 
is no clear evidence for this prediction, since the experiments are rather unclear [2J. 

The diffuse-scattering calculation for the impurity in the hedgehog phase yields the 
profile depicted in figure 5. The scattering is again peaked at the type-I antiferromagnetic 
Bragg spots, and there is a clear dip where the existing hedgehog-phase Bragg spots sit. 
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Unlike the previous calculations, there is now a strong peak centred on the type-I Bragg 
spots. This result provides a profile for experimental verification, but also provides us with 
a picture for what we might anticipate in a more highly disordered material. When the spin 
orientations are in many directions we can anticipate a smoother scattering profile, with 
weaker dependence on the underlying long-range order. 

Fwre 5. The magnetic diffuse scattering profile from the distortion surrounding a Fi atom 
substitutionally replacing a Mn atom in the hedgehog phase of Mn2Fi. The chosen plane is 
the same as in figures 2 and 4, and the dominant scattering is Seen 10 be much smoother and 
lies along the lines that correspond to the classical gmund-state degeneracy. The 'holes' in the 
scanering correspond to the sites of the underlying antifemmagnetic Bragg spots. 

In order to test this basic idea that the lack of symmetry found in the hedgehog phase 
should lead to smoother scattering profiles, we also calculated the diffuse scattering from 
an added impurity in the hedgehog phase, which we plot in figure 6. The smooth scattering 
is observed. 

One rather less immediate prediction is that stoichiometric disorder should stabilize the 
triangular phase: a pair of distant impurities, one composed of a Pt on a Mn site and the 
other being a Mn on a h site, corresponds to such disorder. The energetics are such that 
the relative energy gain from the addition into the coplanar state outweighs the relative loss 
from the omission from the triangular phase, and the triangular phase should be stabilized by 
about (-0.954 93 + 0.708 23 - 0.666 79 + 0.758 50) J = -0.154 99J per pair of impurities. 
The phase diagram is consistent with this idea, with the hedgehog phase not extending into 
the disordered phase. 

4. Conclusions 

We have developed a linearized theory that approximately solves the Heisenberg model for 
the magnetic distortion around a local moment impurity in a non-collinear ground-state. We 
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Figure 6. The magnetic diffuse scattering profile from the disloftion surrounding a Mn awm 
substitutionally replacing a pt atom in the hedgehog phase of MnSR The chosen plane is the 
same as in figures 2 and 4. and the scattering is seen to be smooth although there is naw no 
’hole’ where the underlying Bra= scattering is found. 

have looked at both total energies and induced spin densities. Although the theory can be 
applied to any non-collinear spin state, we have in mind the description of phase transitions 
between different antiferromagnetic states for applications. Non-collinear ground states are 
necessarily found in geometrically frustrated lattices, where not all the possible bonds can 
be simultaneously maximized and a compromise solution is required. Together with the 
non-collinearity is often found degeneracy and this is the root cause of the experimentally 
observed phase transitions. If the dominant magnetic interaction yields degenerate ground 
states. then this degeneracy will be lifted by weaker phenomena Transitions between 
different states from a degenerate class can then be accomplished using alloying, which 
involves the dominant magnetic energy scale and might be expected to dominate the weaker 
effects that lift the degeneracy. All our calculations corroborate this basic hypothesis, with 
the energy scale from magnetic distortions being a sizable fraction of the original bond 
strengths. 

We have recognized three basic impurity types: (1) the substitution of an existing 
magnetic atom by a paramagnetic impurity; (2) either substitution or interstitial doping of a 
magnetic impurity at a local ‘dead spot’; and (3) either substitution or interstitial doping of 
a paramagnetic impurity at a site with a local field. For both ( I )  and (3), the doping prefers 
the member of the degeneracy class that has the highest degree of non-collinearity. The 
reason for this choice is that the polarization cloud surrounding the impurity spreads out 
further and more effectively in a high dimensional spin state. As well as the obvious idea 
that there are fewer collinear spins that are difficult to polarize, there is also the idea of using 
rotations of different directions for different purposes, with polarization along different paths 
ending up polarizing in different directions, rather than cancelling out as usually happens 
in coplanar states. For (2). however, we find an opposite result, with local ‘dead-spot’ 
impurities preferring low-dimensional spin states. When optimizing the distortion for this 
case, the impurity is free to take up any direction it might want. For a low-dimensional 



Spin impurities in non-collinear antiferromagnets 1135 

spin state, it is best for the impurity to orient perpendicular to the spin state and then, since 
all the relative angles are at 90" to the impurity field, there is no competition with the 
spin-magnitude constraint and the polarizability is maximum. For a three-dimensional spin 
state there are always some spins with components parallel to the impurity spin, which are 
less easy to polarize. 

We have applied our theory to both y-Mn alloys and Mn3Pt. The theory successfully 
predicts the expected phase diagrams as far as the energetics go, with the the relevant 
degree of non-collinearity being either increased or decreased in agreement with the type 
of impurity found. The energy scales for which impurities break the degeneracy are always 
a small but significant fraction of the dominant antiferromagnetic coupling constant, and 
so we should usually expect alloying to cause phase transitions in frustrated systems with 
degeneracy. 

Alloying non-magnetic impurities into y-Mn is expected to destabilize the collinear 
ground state in favour of the fully non-collinear TSDW state. Substitution of Mn for Pt in 
MnsPt is expected to stabilize the triangular phase and substitution of Pt for Mn is expected 
to stabilize the hedgehog phase. 

As far as magnetic diffuse scattering is concerned, all the Mn alloys considered showed a 
preponderance of scattering at type I Bragg spots. This is not immediately obvious, because 
all the fundamental geometries considered have ground-state degeneracies that range over all 
the edges of the antiferromagnetic Brillouin zone and do not connect to the chemical Bragg 
spots. It would appear that the additional symmetry inherent in type-I antiferromagnetism 
is favoured by paramagnetic impurities. The details of the scattering are controlled by the 
point-symmetry of the isolated defects that we have considered, and this symmetry will 
not be representative of a heavily doped system. The range of the diffuse scattering has 
always proved to be about half of the Brillouin zone, and there has been no opportunity for 
dramatic effects. This result ought to provide an experimental test for spontaneous local 
deformation. since long-range phenomena are not expected for our linear deformations. 

The theory is restricted to isolated impurities, and it  would be useful to extend the 
perturbation theory to cope with interactions between impurities, effects which will attempt 
to drive the phase transitions between different antiferromagnets. 
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